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Abstract

In this short note, we give a short introduction to concentration inequalities, which are parts
of a general phenomenon called concentration of measure. The non-asymptotic nature of these
inequalities makes them attractive for applications in statistical physics and data science. The main
references for our purpose are Vershynin (2018) and Wainwright (2019). Other useful references
for further reading include Rigollet (2015); van Handel (2014); Ledoux (2001); Boucheron et al.
(2013); Tao (2012); Bakry et al. (2013); Durrett (2019); Grimmett and Stirzaker (2001); Blum
et al. (2020); Mohri et al. (2018); Shalev-Shwartz and Ben-David (2014).

1. Appetizer: Random Variables and Scaling

We are interested in asymptotic and non-asymptotic behavior of a sequence of random variables
(RVs) or sequence of functionals of these RVs. Different scaling of such RVs leads to different be-
havior. We will illustrate this via a series of examples concerning deviations of sample mean of i.i.d.
RVs from the true mean.

Take (2, F,P) as the probability space and denote expectation by E. Let S,, = X7 + - + X,
where the X; are independent Rademacher RVs, i.e., P[X; = £1] = 1/2 for all i. Note that ES,, =0
and EX? = 1. Then:

Example 1.1 (No scale and non-asymptotic)
By Hoeffding’s inequality, we have

P[S, > ] < e /2n (1)

for all 6 > 0. This says that the tail of the sequence (S,,) behaves similarly to the tail of the normal
distribution. To show Eqn. (1) directly, let 6 > 0 and A € R and compute:

P[S, > 6] = IP,[e,\sﬂ > em] (2)
< e MRS (by Markov’s inequality) (3)
— N (RN 1)1 (by independence of the X;) (4)
= e cosh™(\) (5)
< e AIHnAT/2 (using cosh(z) < e/ forz e R) (6)
< e—9°/2n (optimizing over \) (7)

Two-sided version of the inequality follows by applying the above inequality for —X; mstegd of X;
to get the same bound for P[—S, > 8]. Then, P[|S,| > 6] = P[S,, > 6] + P[-S, > 6] < 2e9 /2",
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Example 1.2 (Scale of "large deviation”)
Replace § by né in the two-sided version of inequality (1):

IP)HSnl > TL(S] < 2@‘”52/2 — 2€_n1(5) (8)

for all § > 0, where I(§) = §2/2 (rate function). Thus,
.1
nh_{rgo - InP[S,, > nd] = —I(9). (9)

for all § > 0. This is an example of a large deviation statement and it is a special case of Cramér’s
theorem.

Example 1.3 (Scale of "large deviation” = Strong Law of Large Numbers (SLNN))
Eqgn. (8) implies:

Z}P’[S" 26}§2Zen52/2<oo (10)
n>1 n n>1
for all 5 > 0. Therefore, by the first Borel-Cantelli lemma,

IF’[S;: >0 i.o.]:O (11)

for all 6 > 0. Thus, S,,/n — 0 almost surely (a.s.) as n — oco. This is precisely the SLLN.

Example 1.4 (Scale of the central limit theorem (CLT))
Replace § by \/nd in the two-sided version of inequality (1):

P[|S,| > vnd] < 2e70°/2 (12)

for all § > 0. This is not quite the CLT, which says that:

2 e 2 2
. _ —z%/2 —6%/2
nlgr;o P[|S,| > v/nd) \/ﬂ/& e dx < e (13)

T V2w
for all 6 > 0. However, the key observation here is that the right hand side in Eqn. (12) is
independent of n.

A tighter bound is provided by Berry-Esseen: for any § > 0,

2 2 2C
P[|S,,| > v/nd| < 2y =
| I_\/ﬁ]_mée NG

(14)

for some constant C > 0.

How will the above results change if the X; are other RVs? What if the i.i.d. assumption is
relaxed? What if we have a sequence of random processes instead? We will address these questions
later.

Remark 1.1 On the other hand, the Weak Law of Large Numbers (WLNN) says that S, /n — 0 in
probability, as n — co. One may wonder if there is a scaling a,, such that Sy /a, — 0 in probability
but not almost surely as n — oco. The answer is provided by the law of iterated logarithm (LIL), a
fine intermediate result that shows what happens in between the scales of LLN and CLT. The LIL
tells us exactly how large the fluctuations suffered by the sequence (Sy/+/n) are on its route towards
the normal distribution. The scaling of LIL is given by a, = v/2nloglogn and one has:

S, S,
limsup — — 1 and liminf = — —1, a.s.. (15)
n—oo An n—00 dp
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So, Sn/an — 1 a.s. (or with probability one) but S, /a, — 0 in probability, as n — co.

In particular, LIL implies the following guarantee on the deviations of the sample mean as an
estimator of the true mean: with probability one (w.p.1), there is a ng € N such that |S,/n| <
(21loglogn/n)'/? for every n > ng.

As shown in the last sentence of Remark 5, the applicability of the LIL is limited since it does not
tell us how large n should be for a given deviation, i.e., we would like to have a workable expression
for ng. This limitation can be lifted by exploiting concentration inequalities, such as the Hoeffding’s
inequality in Example 1, that can be seen as non-asymptotic versions of the CLT. These inequalities
not only confirm our intuition that sample mean should concentrate tightly about the true mean
but also quantify how a RV X fluctuates around its mean p by providing bounds for the tails of
X — p, such as

P[|X — u| > t] < something small. (16)

Moreover, unlike the classical limit theorems such inequalities are non-asymptotic (i.e., they hold
for all fixed N as opposed to N — o0). The non-asymptotic nature of such inequalities makes them
attractive for applications in statistical physics (where N often corresponds to system size!) and
data science (where N often corresponds to sample size). Concentration inequalities are parts of a
general phenomenon called concentration of measure that we will explore more later. On the other
hand, there are anti-concentration phenomena, as illustrated by the following example, that we will
not study here.

Example 1.5 (Anti-concentration of Gaussian distribution) Let X ~ N(0,02), then

2t 4t
PlX|<tle|-—,=—]. 17
i< e (3.57) (17)

For completeness, we state the classical limit theorems (SLLN, WLLN and CLT) and a non-
asymptotic bound (Berry-Esseen) for general i.i.d. RVs (not just Rademacher as in the above
examples) without proof in the following. Complete proof can be found in standard probability
textbooks Durrett (2019); Grimmett and Stirzaker (2001).

Let S, = Xj + --- + X,,, where the X; are i.i.d. RVs with mean u, variance o2, characteristic
function ¢ and CDF F. Then:

Theorem 1.1 (Classical limit theorems for sum of i.i.d. RVs)
(a) (SLLN)
Sp/n— pa.s.. (18)

(b) (WLLN) The following three statements are equivalent.
(i) & is differentiable at 0, and ¢'(0) = ipu.
(ii) Ast — oo, we have t[1 — F(t) + F(—t)] = 0 and fit xF(dz) — p.
(iii) Sp/n — u, in probability, as n — co.
(¢) (CLT) As n — oo,

Sp —np

ovn

Theorem 1.2 (Berry-Esseen theorem) Assume that E|X;|> < co. Then:

where 0.41 < C < 0.4748 is a universal constant and ®(t) is the CDF of N(0,1) RV.

— N(0,1), in distribution. (19)

sup
teR

1. See also: http://www.cgogolin.de/downloads/meascons.beamer.pdf
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If we assume more, such as the RV being bounded, or having a bounded moment generating
function (MGF), we can prove many ”tail” inequalities, such as Hoeflding’s and others (Bennett’s,
Bernstein’s etc.).

Remark 1.2 (Looking ahead) One way to prove CLT is to use a stability argument (Lindeberg’s
swapping trick — a perturbation in a (normalized) sum by a random variable with matching first and
second moments does not change the (normalized) sum distribution in the limit) — see Tao (2012).
It turns out that stability argument lies at the heart of key results in random matriz theory and
statistical learning theory, as we shall see later.

2. Concentration Inequalities

For what class of RVs does a concentration inequality like Hoeffding’s hold? It turns out that such
RVs must have sub-Gaussian tails.

D(Zaﬁ2nition 2.1 A RV X with u = EX is sub-Gaussian if there exists o > 0 such that Ee X 1) <
e N /2 for all X € R. In this case, o is called the sub-Gaussian parameter.

A sub-Gaussian RV with parameter o satisfies the concentration inequality:
P[|X — | > 1] < 2e77/207, (21)

for all t € R (check this!).

Clearly, any Gaussian RV with positive variance o is sub-Gaussian with parameter ¢. From the
computation in Example 1, we see that Rademacher RVs (and, more generally, Bernoulli RVs) are
sub-Gaussian. Moreover:

2

Proposition 2.1 Any bounded RV is sub-Gaussian.

Proof The key idea of the proof is to use a symmetrization argument.
WLOG, let p = ExX = 0 and take the support of X to be the interval [a, b].
Let X’ be an independent copy of X and e be an independent Rademacher RV. Recall E[e*] <
A%/2 Then:
e” /2. Then:

Exe™ = Ey M Ex X)) (22)
< EX7XI[6>‘(X_X/)] (by Jensen’s inequality) (23)
= Ex,x/[Ee[e ) (24)
< EX’X,e/\Q(X—X’)z/Q < e)\z(b—a)2/2. (25)

Therefore, X is sub-Gaussian with parameter at most o = b—a (one can sharpen this to o = (b—a)/2:
try this!). [ ]

Working with bounded RVs, which we know are sub-Gaussian by now, is a standard trick (the
truncation method Tao (2012)) in proving results such as LLN and CLT.

On the other hand, Poisson, exponential, Pareto and Cauchy distributions are not sub-Gaussian
(check this!).

We have a generalization of (1) to sum of independent sub-Gaussian RVs.



A SHORT INTRODUCTION TO CONCENTRATION INEQUALITIES

Proposition 2.2 (Hoeffding bound for sum of independent sub-Gaussian RVs) Let S, = X1+ -+
X, where the X; are independent mean zero sub-Gaussian RVs with parameter o;. Then, for all
t>0,

t2
P[S,, > ] < exp (—) : (26)
! 2]l 13
where o = (01,...,0,) and ||o||3 =Y, 02,
Proof Show that S, is sub-Gaussian with parameter ||o||2 (try this!) [ ]

It turns out that there are relations among the tails, MGF and the LP norms for sub-Gaussian
RVs.

Proposition 2.3 (Sub-Gaussian properties) Let X be a RV. Then the following are equivalent (the
parameters K; > 0 below differ from each other by at most an absolute constant factor).

(i) The tails of X satisfy:

P[|X]| > t] < 2exp(—t*/K}), for allt > 0. (27)

(ii) The moments of X satisfy

1X|z» = (B|X|P)YP < Ko\/p, for allp>1. (28)

(iii) The MGF of X? satisfies:

Eexp(A\?X?) < exp(K3\?), for all X such that |\| < 1/K3 (29)

(iv) the MGF of X? is bounded at some point, i.e.,
Eexp(X?/Kf) < C (30)
where C' =2 (in general, C can be any constant > 1).

Moreover, if EX = 0 then (i)-(iv) are also equivalent to:
(v) The MGF of X satisfies:

Eexp(AX) < exp(K2\?) for all A € R. (31)

Proof See Proposition 2.5.2 in Vershynin (2018). |

Although the class of sub-Gaussian distributions is natural and quite large, it leaves out some
important distributions whose tails are heavier than Gaussians. For instance, in applications one
is often interested in functionals like X? or || X||3 := Zfil X? (Euclidean norm), where the X; are
independent sub-Gaussian RVs. However, the X? are not sub-Gaussian. In fact,

PIX? > 1] = P|X;| > V] ~ exp(—ct) (32)

for some constant ¢ > 0. This motivates us to look at distributions that have at least an exponential
tail decay and prove an analog of Hoeffding’s inequality for them. More generally, one can look at
distributions that have tail decay of the form exp(—ct®) for a > 0 or heavy tail (i.e., the MGF Ee*X
is infinite for all A > 0) but we will not pursue the general theory here.
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Definition 2.2 A RV with u = EX is sub-exponential if there exists (v,a), v,a > 0, such that
EeMX =1 < e*3*/2 for gll |A| < 1/av.

In the above we adopt the definition in Wainwright (2019), which is slightly more general than
the one considered in Vershynin (2018) (setting u = 0, K5 = v/v/2 = « in Proposition 2.7.1 there
gives us other useful sub-exponential properties).

Proposition 2.4 (Sub-ezponential properties) Let X be a zero mean RV. Then the following are
equivalent.

(i) The tails of X satisfy: there exists constants c1,ca > 0 such that

P[|X| > t] < cie” ', for allt > 0. (33)

(ii) There exists co > 0 such that E[e*X] < oo for all |\| < cq.
(iii) v := supkEQ(E[Xk]/k!)l/k is finite.
(iv) There exists (v,a), v,a > 0, such that Ee** < e’ N/2 for all Al < 1/a.

Proof See Wainwright (2019) or Vershynin (2018). [ |

Clearly, any sub-Gaussian RVs with positive parameter o are sub-exponential (with v = ¢ > 0
and o = 0). Products (such as squares) of sub-Gaussian RVs are sub-exponential. Other examples
include the exponential and Poisson distributions (check this!).

Example 2.1 (Sub-exponential but not sub-Gaussian) Let Z ~ N(0,1) and consider X = Z*. Then
EX =VarZ =1 and

e N :
—_ A<1/2
Eexp(A(X — 1)) = 4 vicx TA<Y/
00 otherwise.

This shows that X is not sub-Gaussian. Since \/el_ﬁ < 2N for |\| < 1/4, X is sub-exponential
with (v, a) = (2,4).

Proposition 2.5 (Sub-ezponential tail bound) Let X be a sub-exponential RV with parameters
(v,a). Then,
exp(—t2/2v%) if 0 <t <1v?/a

P —p=zt]< {exp(—t/Qa) if t > v?/a.

Proof WLOG, assume g = 0. We have, proceeding as in the Chernoff-type approach:
IP[X > t] < e*/\tE[e)\X} < ef)\t+/\21/2/2 —. 6g()\,t) (34)

for all A € [0,1/a).

It remains to compute, for a fixed ¢ > 0, g*(t) := infyc[o,1/a) 9(X, ). There is an unconstrained
minimum at \* = ¢/v2.

Now, if ¢ € [0,v%/a), then the unconstrained minimum is also the constrained minimum and

so g*(t) = —t?/2v%. Otherwise, we may assume that ¢t > v?/a. Since g(-,t) is monotonically de-
creasing in [0, A*), the constrained minimum is achieved at the boundary point AT = 1/a. So,
g*(t) = —t/a +1v?/2a* < —t/2a. The proof is done. ]

An alternative way to verify sub-exponential property is by controlling the polynomial moments
of the RV.
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Definition 2.3 Given a RV X, wa say that Bernstein’s condition with parameter b holds if
1
[EI(X =] < GMo™* 2, for k=2,3.4,.... (35)

For example, if X is a bounded RV and, in particular, if | X — pu| < b, then X satisfies the above
Bernstein’s condition. In fact, any RV satisfying Bernstein’s condition is sub-exponential. As we
will see, this condition implies that the tail bounds are tighter than Hoeffding’s.

Lemma 2.1 If X is a RV satisfying Bernstein’s condition (35), then X is sub-exponential with
parameter (V20,2b), where 0% = E[(X — p)?].

Proof
)\2 2 e El(X — k )\2 2 )\2 2 >
ElX-m] =1 4 2” + ZA’“% <1+ 2” + 2" 3 (Af)+ 2, (36)
k=3 ’ k=3
For |\ <, E[erX-m] <1+ % < exp(%)7 where we have used 1+t < e’ for ¢t > 0.
Therefore, for [A| < &, we have E[eMX~#)] < exp(’\;@). ]

The following proposition gives tail bounds on RVs satisfying the Bernstein’s condition (e.g.,
sub-exponential RVs).

Proposition 2.6 (Bernstein-type bound) Let X be a RV satisfying the Bernstein condition (35).
Then, for |\| < 1/b,

E[e/\(X_“)] < exp ()\202) . (37)
B 2(1 —b[A|)
Moreover, we have the concentration inequality:
2
PIX —p| > t] < 2exp (2(‘72"‘1775)) (38)

for allt > 0.

Proof We have already shown the first statement in proof of the previous lemma. The second
statement can be shown by using Hoeffding-type approach in Example 1 and (37) (try it!). |

Sub-exponential property is preserved under summation for independent RVs. In particular:

Example 2.2 Let X;, i = 1,..., N, be independent RVs, EX; = p; and sub-exponential with pa-

rameter (vg, o). Then, Sy = Zf\;l(Xi — ;) is sub-exponential with parameter (vi,a.), where
o, =max; a; and v: =Y. v2. Moreover, fort >0,
S 1 N*? Nt
P[&vzt] gexp(—Qmin< 7 ,a*>). (39)

Check all these! Also, one can derive a Bernstein-type bound for Sy /N (do this!).
Then, setting p; = 0, you should be able to obtain:

2 exp(—ct?) ift < CVN

P[SN/\/NZ < {Zexp(t\/ﬁ) ift > CVN,
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for some constants c¢,C > 0.

Therefore, in the small deviation regime where t < Cv/N, we have a sub-Gaussian tail bound
as if the sum had a normal distribution with constant variance. Note that this domain widens
as N increases and the CLT becomes more powerful. For large deviations where t > C\/N, the
sum has a heavier, sub-exponential tail bound. In short, Bernstein’s inequality for a sum of i.i.d.
sub-exponential RVs gives a mixture of two tails: sub-Gaussian for small deviations and sub-
exponential for large deviations.

The Bernstein-type bound can be strengthened by Bennett’s inequality. We will not cover Ben-
nett’s here — see Exercise 2.7 in Wainwright (2019) for details.
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