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Abstract
In this short note, we show that the x-component of a stochastic version of the famous Lorenz-63
system satisfies a generalized Langevin equation. We then give a few insightful remarks from the
point of view of nonequilibrium statistical mechanics (via Kac-Zwanzig Hamiltonian formalism),
study maximal transport (upper bound on time average of an observable), present a homogeniza-
tion result and raise some questions for future work.
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1. Introduction

We consider the following stochastic version (in Itô form) of the Lorenz-63 model:

ẋ = σ(y − x), (1)

ẏ = −y + rx− xz + σyẆy, (2)

ż = −bz + xy + σzẆz, (3)

where σy, σz ≥ 0, Wy and Wz are independent Wiener processes. The initial conditions and param-
eters (σ, r, b) are chosen so that the underlying deterministic system behaves chaotically (e.g., the
classical values (σ, r, b) = (10, 28, 8/3)).

The deterministic version of the above model was first introduced in Lorenz (1963) as a simplified
mathematical model for atmospheric convection, whereas the stochastic version was recently studied
in Lorenz (1963); Agarwal and Wettlaufer (2016); Weady et al. (2018). This stochastic model can
also be viewed as an effective model obtained in the white noise limit of a suitable open system (e.g.,
that described by coupling three Lorenz-63 systems with appropriate time scale separation Givon
et al. (2004)).

In this note, we are interested in studying the x-dynamics. Figure 1 shows a typical trajectory
of the x-component, which can be seen to oscillate between the states centered around x = −10 and
those around x = 10 in a random manner. It seems then reasonable to describe the x-component
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as a kind of nonlinear stochastic oscillator. We are going to make this observation precise in the
following. We will take r > 1 in the following.

Figure 1: A realization of x-component of the stochastic Lorenz system (1)-(3), with the classical
parameter values, σy = σz = 1, and x(0), y(0), z(0) ∼Uniform[−10, 10].

2. From Stochastic Lorenz System to Generalized Langevin System

Using the first two equations, we derive:

ẍ = −(σ + 1)ẋ+ σ(r − 1)x− σxz + σσyẆy, (4)

and one can also show:

ż + bz =
1

2σ

(
d

dt
(x2) + 2σx2

)
+ σzẆz. (5)

We can write the solution for z as:

z(t) = z(0)e−bt +
1

2σ

∫ t

0

e−b(t−s)
(
d

ds
(x2(s)) + 2σx2(s)

)
ds+ σz

∫ t

0

e−b(t−s)dWz(s). (6)

Performing an integration by part for the first integral on the right hand side above gives:

z(t) = η(0)e−bt + γ

∫ t

0

e−b(t−s)x2(s)ds+
x2(t)

2σ
+ σz

∫ t

0

e−b(t−s)dWz(s) =: η(t) +
x2(t)

2σ
+ ξ(t), (7)

where η(0) = z(0)− x(0)2

2σ and γ = 1− b
2σ > 0. Note that η solves η̇ = −bη + γx2.

Combining what we have so far, we see that the x-component of the stochastic Lorenz equation
is the solution to:

ẋ = v, (8)

v̇ = −(σ + 1)v + σ(r − 1)x− x3

2
− σxη + σσyẆy − σxξ, (9)

η̇ = −bη + γx2, (10)

ξ̇ = −bξ + σzẆz, (11)

with the initial conditions v(0) = −σx(0) + σy(0), ξ(0) = 0 and η(0) = z(0)− x(0)2

2σ .
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This is a generalized version of Langevin-Kramers equation, modeling the damped and forced
motion of a particle in a double well potential. The particle is driven by a stochastic force, modeled
by sum of an additive white noise and a multiplicative colored noise. The deterministic forcing
term, −σxη, depends on the memory of the particle past motion and is essential for emergence of
the chaotic behavior. This is of course not a new result in the deterministic case (see Festa et al.
(2002a,b) and the references therein) but we are not aware of any studies for the stochastic case.

It is interesting to note that the additive white noise in the z-component of the original Lorenz
system leads to the multiplicative colored noise in the v-component of the Langevin system. The
hopping of x between the two states, x = ±

√
2σ(r − 1), of the Langevin system is dictated by the

competition between the deterministic and stochastic forcing.

Remark 1. Had we put the additive white noise term, σxẆx, in the x-equation of the original
model, the extra term1 σxẄx + σxθ, where θ̇ = −bθ+ xẆx/σ, would appear on the right hand side
in the equation for v above.

Remark 2. We can compare the Langevin system to another widely studied chaotic dynamical
system, the Duffing oscillator: ẍ+ δẋ+ αx+ βx3 = γ cos(ωt). Note that the forcing in the Duffing
equation is external, whereas that in the v-equation is internal. Both types of forcing give rise to
chaotic behavior in certain parameter regime.

Remark 3. (Two limiting cases) Sending σ → 0 in the Langevin system, we have:

ẍ = −ẋ− x3/2, (12)

describing an underdamped particle in a quartic potential. On the other hand, in the limit σ →∞,
we have

ẋ = (r − 1)x− xη + σyẆy − xξ, (13)

where η(t) = z(0)e−bt +
∫ t
0
e−b(t−s)x2(s)ds (i.e., it solves η̇ = −bη + x2, with η(0) = z(0)) and ξ is

the colored noise as before. Equivalently, in terms of only the x-variable:

ẋ(t) = ((r− 1)− z(0)e−bt)x(t)− x(t)

∫ t

0

e−b(t−s)x2(s)ds+ σyẆy − σzx(t)

∫ t

0

e−b(t−s)dWz(s). (14)

This describes an overdamped particle in a time-varying double well like potential, driven by an
additive white noise and a multiplicative colored noise. Deterministic chaos and stochastic noise
compete to dictate the x-dynamics as one varies the Prandtl number σ > 0.

Remark 4. In fact, the x-component of the stochastic Lorenz system belongs to the class of
generalized Langevin equations (GLEs) studied in our recent paper Lim et al. (see also the references
therein for a literature review of GLEs). We can write η = β + γ

b x
2, where β solves

β̇ = −bβ −
(

2

b
− 1

σ

)
xv, (15)

1. One needs to interpret any derivative of the Wiener process in a generalized sense.
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with β(0) = z(0) − x2(0)/b. Therefore, the x-component of the stochastic Lorenz equation solves
the GLE:

ẋ = v, (16)

v̇ = −(σ + 1)v + σ(r − 1)x− σ

b
x3 − σxβ + σσyẆy − σxξ, (17)

β̇ = −bβ −
(

2

b
− 1

σ

)
xv, (18)

ξ̇ = −bξ + σzẆz, (19)

where x(0) is as before, v(0) = σ(y(0)− x(0)), ξ(0) = 0 and β(0) = z(0)− x2(0)/b.
Equivalently, in the form of the GLEs in Lim and Wehr (2018):

v̇(t) = −(σ + 1)v(t) + σF (t, x(t)) + σx(t)

∫ t

0

e−b(t−s)
(

2

b
− 1

σ

)
x(s)v(s)ds (20)

+ σσyẆy + σx(t)ξ(t), (21)

where F (t, x) = (r − 1 − β(0)e−bt − σξ(0)e−bt)x − 1
bx

3 = −U ′(t, x), where U is a time-varying

double well potential (c.f. Eqn. (2.2) in Lim et al.), ), ξ(t) = ξ(0)e−bt − σz
∫ t
0
e−b(t−s)dWz(s), with

ξ(0) ∼ N(0, σ2
z/2b). If we send σ →∞ in the above, then:

ẋ(t) = F (t, x(t)) +
2

b
x(t)

∫ t

0

e−b(t−s)x(s)ẋ(s)ds+ σyẆy − σzx(t)ξ(t). (22)

Looking at the stochastic Lorenz-63 system through the lens of GLE could give us some refreshing
perspective on the chaotic and stochastic behavior of x-component of the system. In particular, the
x-dynamics of the stochastic Lorenz-63 system can be derived from a Kac-Zwanzig Hamiltonian
model, describing an anharmonic oscillator interacting with an equilibrium heat bath (sum of two
independent Markovian and non-Markovian heat bath at two different temperatures) and is subject
to a deterministic time-dependent external force f Zwanzig (1973); Lim and Wehr (2018):

H(x, v, {x}k, {v}k) =
1

2
v2 + U(x) + f(t)

x2

2
+
∑
k1

(
1

2
v2k1 +

1

2
ω2
k1

(
xk1 −

ck1
ω2
k1

φ1(x)

)2
)

(23)

+
∑
k2

(
1

2
v2k2 +

1

2
ω2
k2

(
xk2 −

ck2
ω2
k2

φ2(x)

)2
)
, (24)

with φ1(x) = x, φ2(x) = σx2/2 (quadratic coupling), f(t) = σ(β(0)+σξ(0))e−bt, U(x) = +σx4/4b−
σ(r−1)x2/2, the cki, ωki (i = 1, 2) are appropriate variables determining the damping and noise term,
and the initial data xki(0) and vki(0) are independent mean zero Gaussian random variables with
covariance proportional to the temperature of the respective heat bath (i.e., distributed according to
a Gibbs measure). By relating σy and σz to the temperature of the respective heat bath, fluctuation-
dissipation relation of the first kind and second kind are automatically satisfied respectively.

On the other hand, in general the memory term in a GLE (not restricted to the one in Remark
4) may be responsible for any chaotic behavior of the system. This also justifies the use of GLEs to
model physical processes in climate science Gottwald et al. (2017).

3. Maximal Transport

Recall that x is as before, v = σ(y − x), and η = z − x2/(2σ), so xy = xv/σ + x2. Let 〈x〉T :=
1
T

∫ T
0
x(t)dt. The following results are obtained by extending the background method in Souza and

Doering (2015) to the stochastic case.
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Proposition 1 Let T > 0, then a.s.,

〈x2〉T = 〈xy〉T +O(1/T ), (25)

〈y2〉T = r〈xy〉T + σy〈yẆy〉T − b〈z2〉T + σz〈zẆz〉T +
σ2
y + σ2

z

2
+O(1/T ), (26)

〈xy〉T = b(r − 1) +
σz〈zẆz〉T
r − 1

− 2σz〈Ẇz〉T +
σy
r − 1

〈yẆy〉T +
σ2
y + σ2

z

2(r − 1)
(27)

− 1

(r − 1)

〈
(x− y)2 + b(z − r + 1)2

〉
T

+O(1/T ), (28)

as T →∞.

Theorem 3.1

lim sup
T→∞

〈x2〉T ≤ x2st +
σ2
y + σ2

z

2(r − 1)
+

1

r − 1
lim sup
T→∞

(σz〈zẆz〉T + σy〈yẆy〉T ), (29)

lim sup
T→∞

〈y2〉T ≤ y2st +
r(σ2

y + σ2
z)

2(r − 1)
+

2r − 1

r − 1
lim sup
T→∞

(σz〈zẆz〉T + σy〈yẆy〉T ), (30)

lim sup
T→∞

〈xy〉T ≤ xstyst +
σ2
y + σ2

z

2(r − 1)
+

1

r − 1
lim sup
T→∞

(σz〈zẆz〉T + σy〈yẆy〉T ), (31)

a.s., where xst and yst are the steady-state solution of the deterministic Lorenz-63 equations, i.e.,
xst = yst = ±

√
b(r − 1).

Proof This follows from the previous proposition, and the fact that 〈Ẇ 〉T /T = WT /T → 0 as
T →∞ a.s. for any Wiener process W .

Taking the ensemble average, we find:

E lim sup
T→∞

〈xy〉T ≤ xstyst +
σ2
y + σ2

z

2(r − 1)
. (32)

As expected, this stochastic upper bound is larger than the deterministic counterpart of Souza and
Doering Souza and Doering (2015), in agreement with Agarwal and Wettlaufer (2016). However, the
above derived bound is smaller than the one in Agarwal and Wettlaufer (2016), where the x-equation
is driven by a white noise there. Following Agarwal and Wettlaufer (2016), one can study the effect
of noise on the maximal transport as the Rayleigh number r is varied. A natural question is how
does the bound relate to the averages with respect to the invariant measure of the stochastic Lorenz
system and is it tight (it is saturated by steady convection solutions in the deterministic case). It
will be good to investigate this in the GLE framework. One can also try to extend the optimal
control method of Souza and Doering to obtain a tight bound for the stochastic case.

4. A Homogenization Result

We are interested in the joint limit of σ, b, σz → ∞ at the same rate of the GLE in Remark 4 (or
equivalently the original stochastic Lorenz system). We replace σ 7→ σ0/ε, b 7→ b0/ε, σz 7→ σ̃z/ε in
the GLE, where b0, σ0, σ̃z > 0 are proportionality constants and ε > 0 is a small parameter. We
then study the limit ε→ 0 of the resulting rescaled GLE by formally applying the result in Lim et al..
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A Homogenization Result. In the limit ε→ 0 the x-component, xε, of the family of the rescaled
GLEs (or the rescaled stochastic Lorenz equations) converge to X, satisfying the linear Itô SDE:

dXt = (r − 1)Xtdt+ S(Xt)dt+ σydWy −
σ̃z
b0
XtdWz, (33)

where r > 1, σy ≥ 0, and S(X) = RX, with R = σ0σ̃
2
z/(2b

2
0(b0 + σ0)) > 0, is a noise-induced drift.

More precisely, with more work2 one may show that supt∈[0,T ] |xεt −Xt| → 0 in probability, for any
T > 0.

Taking the above limit naively (i.e., by simply setting ε = 0 in the prelimit equations and then
rearrange the terms3) would incorrectly give us the above Itô SDE without the noise-induced drift
term. This noise-induced drift effectively further destabilizes the limiting system. Its presence is due
to, or can be traced back to, the presence of the multiplicative noise term, σ0x

εξε, in the prelimit
equations, or equivalently, the additive white noise term in the z-equation in (3). Note that when
σy = 0, X is simply a geometric Brownian motion (Black-Scholes model).

It would be interesting to investigate a generalized version of the stochastic Lorenz system and
study its (anomalous) diffusive behavior. Also, one could study stochastic thermodynamics and
fluctuation theorems. We leave these to future work.

References

Sahil Agarwal and John S Wettlaufer. Maximal stochastic transport in the Lorenz equations. Physics
Letters A, 380(1-2):142–146, 2016.

R Festa, A Mazzino, and D Vincenzi. Lorenz deterministic diffusion. EPL (Europhysics Letters), 60
(6):820, 2002a.

R Festa, A Mazzino, and D Vincenzi. Lorenz-like systems and classical dynamical equations with
memory forcing: An alternate point of view for singling out the origin of chaos. Physical Review
E, 65(4):046205, 2002b.

Dror Givon, Raz Kupferman, and Andrew Stuart. Extracting macroscopic dynamics: model prob-
lems and algorithms. Nonlinearity, 17(6):R55, 2004.

GA Gottwald, DT Crommelin, and CLE Franzke. Stochastic climate theory. Nonlinear and Stochas-
tic Climate Dynamics, pages 209–240, 2017.

David P Herzog, Scott Hottovy, and Giovanni Volpe. The small-mass limit for Langevin dynamics
with unbounded coefficients and positive friction. Journal of Statistical Physics, 163(3):659–673,
2016.

Soon Hoe Lim and Jan Wehr. Homogenization for a class of generalized Langevin equations with
an application to thermophoresis. Journal of Statistical Physics, Nov 2018. ISSN 1572-9613. doi:
10.1007/s10955-018-2192-9. URL https://doi.org/10.1007/s10955-018-2192-9.

Soon Hoe Lim, Jan Wehr, and Maciej Lewenstein. Homogenization for generalized Langevin equa-
tions with applications to anomalous diffusion. Annales Henri Poincaré (2020).
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