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Abstract

In these notes, we study stochastic models describing a (passive) Brownian particle interacting
with an active heat bath. The active heat bath is modeled by a non-Gaussian process capturing
a particular self-propelled motion of the particle. This is in contrast to the passive bath, which
is modeled mathematically by a (Gaussian) Ornstein-Uhlenbeck process. From these models, we
identify a relevant time scale separation and derive effective models in the limit of infinite time
scale separation. The effective models are described by SDEs which may include effective drift
terms. We further study stationary distributions of these SDEs. We find that, in contrast to the
case of passive bath, the stationary distributions of the SDEs are generally non-Gaussian and, in
particular, exhibit activity-induced heavy tails.
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1. General Model

Consider

dq(t)

dt
= u(t) + F (q(t)) + σξ(t), (1)

where u(t) ∈ Rn is a (typically non-Gaussian) random velocity process (for instance, some functional
of a Wiener process), F : Rn → Rn is a (deterministic) external force, ξ ∈ Rk is a Gaussian white
noise and σ : Rk → Rn is a constant matrix. The initial condition is q(0) = q (independent of
{ξ(t),u(t), t ≥ 0}), and ξ and u are independent processes.
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2. Stochastic Model for a Trapped Passive Brownian Particle in an
Active Bath

2.1 1D Model

Consider the following Langevin model (in the form of eqn. (5) in Argun et al. (2016)) for position,
x ∈ R, of a trapped passive Brownian particle in an active bath:

dx

dt
= − 1

γ

dV (x)

dx
+ ηp + ηa, (2)

where γ > 0 is the particle friction coefficient, V (x) is the potential, ηp represents the thermal Gaus-
sian (white) noise characterized by 〈ηp(t + τ)ηp(t)〉 = 2DT δ(τ) (recall that DT is the translational
diffusion coefficient and is related to γ by the fluctuation-dissipation relation DT γ = kBT ), and ηa
represents the fluctuations due to the presence of the active bath.

We take the potential to be harmonic, i.e. V (x) = 1
2kx

2, with stiffness k > 0. We are going to
write (2) as a SDE in a differential form. To this end, we write ηpdt =

√
2DT dW

T
t , where WT

t is a
Wiener process, i.e. a mean zero Gaussian process with 〈WT

t W
T
s 〉 = min(t, s) Pavliotis (2014). In

the literature, there are various self-propulsion models, falling under the name of run-and-tumble
particles, active Brownian particles and active Ornstein-Uhlenbeck particles Fodor and Marchetti
(2018); Romanczuk et al. (2012). We model ηa as the following non-Gaussian process:

ηa = v0 cos(φt), (3)

where v0 > 0 is a constant and φ solves the SDE:

dφt =
√

2DRdW
R
t , (4)

where DR is the rotational diffusion coefficient and WR
t is a Wiener process independent of WT

t .

The above considerations allow us to rewrite (2) in the form of Itô SDEs for the position process
xt and angle process φt:

dxt = −k
γ
xtdt+

√
2DT dW

T
t + v0 cos(φt)dt, (5)

dφt =
√

2DRdW
R
t . (6)

The initial conditions are taken to be as follows: x0 = x (which can be random or simply a constant)
and φ0 is a random variable uniformly distributed on [0, 2π], i.e. φ0 ∼ Unif[0, 2π].

Two important length scales are the persistence length, La = v0
DR

, associated with the active

bath and the characteristic dimension, Lot =
√

kBT
k , of the harmonic trap (width of the Gaussian

distribution proportional to e−V (x)/kBT ). On the other hand, two important time scales are the
rotational diffusion time, τR ∝ 1/DR, and the time, τot = γ/k, needed by the particle to move
to the center of the harmonic trap. We are going to demonstrate, using a simplifying assumption,
how interplay between these two length scales or time scales could lead to transition of stationary
position probability distribution from a Boltzmann to a non-Boltzmann regime, and to quantify the
deviation from a Boltzmann description.

The simplifying assumption is that DR is small enough to be neglected (or τR � τot or La � Lot).
In view of the conclusion in Argun et al. (2016), we expect non-Boltzmann statistics to emerge. This
assumption implies that φt = φ0+

√
2DRW

R
t = φ0 ∼ Unif[0, 2π] for all t ≥ 0. Therefore, the limit as
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DR → 0 is not a diffusive limit as the active noise v0 cos(φt)→ v0 cos(φ0), which is not a Gaussian
white noise, in the limit. Physically, this means that the self-propelled particles making up the
active bath are equally likely to explore all possible directions in space at any given time point –
this is not an unrealistic assumption afterall. In Appendix C, we explore a diffusive limit and show
that heavy-tail phenomenon also arises in the corresponding limiting SDE model.

Writing down the Fokker-Planck equation and solving for the stationary probability distribution
(see Appendix A for details), one finds that:

Pst(x, φ) = C1 exp

(
− k

2DT γ
x2 +

v0
DT

cos(φ)x

)
, (7)

where C1 is a normalization constant. Therefore,

Pst(x) =
1

2π

∫ 2π

0

Pst(x, φ)dφ = C1 exp

(
− k

2DT γ
x2
)
I0

(
v0
DT

x

)
(8)

=: C1 exp

(
−Vb(x)

kBT

)
I0

(
Va(x)

kBT

)
, (9)

where I0 denotes the 0th-order modified Bessel function of the first kind (note: I0(0) = 1), Vb(x) =
V (x) and Va(x) = γv0x (note that we have made use of the fluctuation-dissipation relation DT γ =
kBT ).

The presence of the multiplicative factor in the form of I0 makes the stationary distribution to
have heavy tails. In particular, the ratio v0/DT = v0γ/(kBT ) serves as a useful parameter to quan-
tify the deviation of the distribution from a Boltzmann one: the greater the deviation of v0 from

zero, the more heavier the tails of the distribution. Increasing v0 past the critical value vc =
√

2kDT
γ ,

the stationary distribution exhibits double peaks (i.e. it is symmetric and bi-modal, with a local
minimum at the origin), illustrating dominance of the active fluctuations which steer the particle
away from the trap center in the long run. This result also qualitatively agrees with the findings
of the model of a trapped active particle in a passive bath Pototsky and Stark (2012); Basu et al.
(2018); Takatori et al. (2016).

Let us end this section with a remark. In Argun et al. (2016), q-Gaussian distributions are used to
fit the observed distributions which exhibit heavy tails. To our knowledge, stationary distributions
of a q-Gaussian form are natural for a class of SDEs driven by a sum of additive and multiplicative
noise Anteneodo and Tsallis (2003). An example is the following Itô SDE:

dxt = −k
γ
xtdt+

√
2DT dW

T
t + σxtdW

k
t , (10)

where σ > 0 is a constant, and WT
t and W k

t are independent Wiener processes. Although the above

SDE can be obtained from (30) by setting v0 = 0 and replacing k by k + ξt, where ξt = −γσ dW
k
t

dt ,
it does not seem to be a sensible model for a Brownian particle in an active bath.
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2.2 2D Model

Taking the trapping potential to be harmonic and symmetric, i.e. V (x, y) = 1
2k(x2+y2) = V (x)V (y),

we consider the following SDEs for the position process (xt, yt) ∈ R2 and angle process (φ1t , φ
2
t ) ∈ R2:

dxt = −k
γ
xtdt+

√
2DT dW

T,1
t + v0 cos(φ1t )dt, (11)

dyt = −k
γ
ytdt+

√
2DT dW

T,2
t + v0 sin(φ2t )dt, (12)

dφ1t =
√

2DRdW
R,1
t , (13)

dφ2t =
√

2DRdW
R,2
t , (14)

where the Wiener processes WT,1
t , WT,2

t , WR,1
t and WR,2

t are independent. The initial conditions
are taken to be as follows: x0 = x, y0 = y (which can be random or simply a constant), and φ10 and
φ20 are independent random variables uniformly distributed on [0, 2π]. The fact that φ10 and φ20 are
independent random variables, instead of the same random variable, is important to distinguish the
model of a passive Brownian particle in an active bath from that of an active particle in a passive
bath Bechinger et al. (2016); Tailleur and Cates (2008).

We again assume that DR is negligible as in the 1D case. Under this assumption, one can
compute the stationary probability distribution:

Pst(x, y) = C2 exp

(
− k

2DT γ
(x2 + y2)

)
I0

(
v0
DT

x

)
I0

(
v0
DT

y

)
(15)

=: C2 exp

(
−Vb(x) + Vb(y)

kBT

)
I0

(
Va(x)

kBT

)
I0

(
Va(y)

kBT

)
, (16)

where C2 is a normalization constant, and Vb and Va are as before.

On the other hand, repeating the derivation for the model of an active particle in a passive bath,
in which case φ10 = φ20 = φ0 ∼ Unif[0, 2π], with DR = 0, one finds that the stationary probability
distribution is given by:

P ′st(x, y) = C3 exp

(
− k

2DT γ
(x2 + y2)

)
I0

(
v0
DT

√
x2 + y2

)
, (17)

where C3 is a normalization constant. Note that P ′st(x, y) 6= Pst(x, y) and in fact it has, in general,
slightly heavier tails than that of Pst(x, y) (see Figure 1). However, the critical values of v0 beyond

which the distribution becomes bi-modal are the same for the two models – it is vc =
√

2kDT
γ , due to

the symmetry and close resemblance of our 2D model to the 1D one. The difference in the stationary
distribution illustrates the different nature of the two models. Although one expects passive particle
in an active bath to qualitatively behave like an active particle due to multiple interactions with the
self-propelled particles, there are notable quantitative differences even in the long time limit.
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Appendix A. Fokker-Planck Equation and Probability Distribution

We first consider the 1D model in the following. The Fokker-Planck equation (or forward Kolmogorov
equation), associated with (30)-(31), for the probability distribution of the process (xt, φt) is:

dP (x, φ, t)

dt
=
k

γ

∂

∂x
(xP ) + v0 cos(φ)

∂P

∂x
+DT

∂2P

∂x2
+DR

∂2P

∂φ2
. (18)

One could, in principle, solve the above PDE using the Fourier transform method as in Sevilla and
Sandoval (2015) but the resulting solution is obtained in a form of series expansion which does not
allow convenient analysis of the probability distribution unless further assumptions are made. Under
our assumption that DR = 0, the stationary probability distribution (8) follows by setting the right
hand side in the above equation to zero and solving for P .

We now derive the probability distribution P (x, t) of the particle’s position for all time t. The
solution to the SDEs (30)-(31) can be written as:

xt = x0e
− kγ t +

√
2DT

∫ t

0

e−
k
γ (t−s)dWT

s + v0

∫ t

0

e−
k
γ (t−s) cos(φ0 +

√
2DRW

R
s )ds, (19)

which is clearly non-Gaussian, subjecting to non-Gaussian perturbation introduced by the last in-
tegral term above. Note that 〈|xt|〉 ≤ 〈|x0|〉+ v0γ

k and so we expect the particle to be confined, on
average, within a distance of v0γ/k from its initial position.

We are going to set DR = 0 in the following to simplify the analysis, in which case:

dxt = −k
γ
xtdt+ v0f(φ0)dt+

√
2DT dW

T
t =: − ∂

∂x
Ueff (xt, φ0)dt+

√
2DT dW

T
t , (20)

where Ueff (x, φ) = k
2γx

2 − v0 cos(φ)x and

f(φ0) = cos(φ0), (21)

which can be interpreted as a random external forcing added to the system that otherwise could be
described by an Ornstein-Uhlenbeck process. Here, φ0 ∼ Unif[0, 2π].

Taking the initial condition x0 = y, where y is a constant, the conditional probability distribution
of xt given φ0 can be shown to be:

P (x, t|φ0) =

√
µ

2πDT (1− e−2µt)
exp

−µ
(
x− ye−µt − v0

µ (1− e−µt)f(φ0)
)2

2DT (1− e−2µt)

, (22)

where µ = k/γ. Therefore, the probability distribution of xt is given by:

P (x, t) =
1

2π

∫ 2π

0

P (x, t|φ0 = φ)dφ. (23)

A rewriting gives:

P (x, t) =

√
µ

2πDT (1− e−2µt)
exp

(
− µ (x− ye−µt)2

2DT (1− e−2µt)

)
Q(x, t), (24)

where

Q(x, t) =
1

2π

∫ 2π

0

exp

2v0(x− ye−µt)(1− e−µt) cos(φ)− v20
µ (1− e−µt)2 cos2(φ)

2DT (1− e−2µt)

dφ. (25)
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Formula (24) is the main result of this appendix. Note that if v0 = 0, then Q(x, t) = 1, in which
case P (x, t) is simply the probability distribution of an Ornstein-Uhlenbeck process modeling the
position of a Brownian particle in a passive bath. The addition of the active bath (i.e. v0 6= 0)
gives rise to the multiplicative factor Q(x, t) and leads to non-Boltzmann stationary distribution.
Formula (24) also gives an alternative way to derive the stationary distribution in (8) by sending
t→∞ in (24).

The above derivations can be repeated to study the 2D model, under the assumptions used in
Section 2.2. Let zt = (xt, yt) ∈ R2 and cast (11)-(14) as:

dzt = −∇zU(zt)dt+ v0ntdt+
√

2DT dW
T
t , (26)

where U(z) = V (x, y) is a harmonic symmetric potential, nt = (cos(φ10 +
√

2DRW
R,1
t ), sin(φ20 +√

2DRW
R,2
t )), and W T

t = (WT,1
t ,WT,2

t ). Note that when φ10 = φ20 = 0 and WR,1
t = WR,2

t , nt is
simply a Wiener process on a unit circle, which is exponentially ergodic and has the uniform measure
as its invariant distribution Liu and Krstic (2012); Großmann et al. (2015).

Setting DR = 0, we can rewrite the above SDE as:

dzt = −∇zU(zt)dt+ v0n(φ0)dt+
√

2DT dW
T
t =: −∇zU

eff (zt;φ0)dt+
√

2DT dW
T
t , (27)

where U(z) = V (x, y), n(φ0) = (cos(φ10), sin(φ20)), W T
t = (WT,1

t ,WT,2
t ), and Ueff (z;φ) = k

2γ |z|
2−

v0n(φ) · z.

The conditional stationary probability distribution is Pst(z|φ0) = Ce−U
eff (z;φ0), where C is a

normalization constant, and so the stationary probability distribution for the particle’s position in

the 2D case is Pst(z) = C
(2π)2

∫ 2π

0
dφ2

∫ 2π

0
dφ1e

−Ueff (z;φ), giving the formula (15). Alternatively,

since Ueff is at most quadratic in z, one could write down the full probability distribution of zt for
all t. Taking t → ∞ in the expression for the probability distribution then gives (15). In the 2D
case, one could also work in the polar coordinates but one expects to derive the same results.

Appendix B. Pathwise Asymptotic Behavior of the Position Process

We restrict our study to the 1D model. Extension to the 2D model is straightforward. We set√
2DR = ε

√
2D, where D > 0 is a constant and ε > 0 is a small parameter, in the SDEs (30)- (31),

in which case the solution, xεt, to the resulting SDEs reads:

xεt = xe−
k
γ t +

√
2DT

∫ t

0

e−
k
γ (t−s)dWT

s + v0

∫ t

0

e−
k
γ (t−s) cos(φ0 + ε

√
2DWR

s )ds, (28)

where xε0 = x0 = x and t ≥ 0.
The mean-squared displacement, two-time correlation function and various moments, such as

skewness and kurtosis, of xεt can be derived for arbitrary ε > 0 using Itô stochastic calculus. Here
we focus on the asymptotic behavior of xεt for small ε. Using stochastic Taylor expansion, one has:

cos(φ0 + ε
√

2DWR
s ) = cos(φ0)− ε sin(φ0)

√
2DWR

s − ε2 cos(φ0)D(WR
s )2 +O(ε3). (29)

In the following, E[.] denotes mathematical expectation.

Proposition B.1 The family of processes xεt converge to xt, solving the SDE (30) with φt = φ0 ∼
Unif[0, 2π], in the limit as ε→ 0, in the following sense: for all p > 0 and T > 0, E[supt∈[0,T ] |xεt −
xt|p] = O(εp) as ε→ 0.

We refer to Noetel et al. (2017); Milster et al. (2017) for other types of limiting procedure studied
in the context of active Brownian motion. We end this appendix with a few remarks.
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If, in addition to the above, we also set
√

2DT = ε
√

2D′, then the SDEs (30)-(31) correspond to
a stochastic dynamical system perturbed by a small noise. One could then use the large deviation
theory of Freidlin-Wentzell Wentzell and Frĕı to study rigorously the behavior of such system for
small ε.

The opposite limit of DR → ∞ can also be studied, in which case the asymptotic stationary
distribution of position is, to the zeroth order, a Boltzmann distribution. This limit is not interesting
from the point of view of the experimental results obtained in Argun et al. (2016).

Various generalizations of the model studied here or comparison to other models can also be
considered. For instance, the case where the potential is asymmetric or is a symmetric double-well,
the case where v0 is state-dependent, the case where chirality of the active particles is introduced,
the case where the particle moves in the presence of obstacles and boundaries, etc.

For instance, in the 1D model where the potential is a symmetric double-well and the self-
propelled particles in the active bath are chiral (in which case φt also rotates with an angular
frequency Ω), it is expected that stochastic resonance Gammaitoni et al. (1998), a phenomenon that
manifests itself by a synchronization of activated hopping events between the potential minima with
the periodic forcing, f(t, φ0) = cos(φ0 + Ωt), introduced by the active fluctuations, will occur (here
we set DR = 0), leading to the amplification of the weak forcing (for small v0).

Appendix C. Heavy-Tail Phenomena in a Diffusive Limit Case

We consider the following rescaled SDEs (a more general model):

dxt = −U ′(xt)dt+
√

2DT dW
T
t +

v0(xt)

ε
cos(φt)dt, (30)

dφt =

√
2DR(xt)

ε
dWR

t . (31)

The initial conditions are taken to be as follows: x0 = x (which can be random or simply a constant)
and φ0 ∼ Unif[0, 2π]. The limit as ε→ 0 gives us a diffusive limit, while keeping the Peclet number
and Lot fixed in the limit and sending La → 0.

By means of homogenization techniques, one can show that in the limit as ε→ 0, the process x
converges in law to X solving the following Itô SDE:

dXt =
v0(Xt)

2

∂

∂Xt

(
v0(Xt)

DR(Xt)

)
dt− U ′(Xt)dt+

√
2DT dW

1
t +

v0(Xt)√
DR(Xt)

dW 2
t , (32)

where the W i
t are independent Wiener processes. Note that due to the state-dependence of v0

and/or DR, there is presence of a noise-induced drift (which would vanish had v0 and DR are
state-independent) in the above limiting SDE.

One can compute the stationary probability distribution of this limiting SDE to be:

pst(x) ∝ exp

∫ x
v0(x)

2
∂
∂x

(
v0(x)
DR(x)

)
DR(x)−DR(x)U ′(x)

DR(x)DT + v20(x)

 , (33)

which is generally non-Gaussian. In particular, when U ′(x) = k
γx, v0(x) = v̄0x and DR(x) = DR,

we have:

pst(x) ∝ 1

(DRDT + v̄20x
2)c0

, (34)

with

c0 =
2DRk − v̄20γ

4γv̄20
. (35)

In appropriate parameter regimes, this gives us Cauchy distribution.
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Figure 1: Plots of stationary position probability distribution at y = 3 (left) and y = 5 (right) for
two different 2D models: the dashed line corresponds to the stationary distribution for
the model of passive particle in an active bath and the solid line to that of active particle
in a passive bath.
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