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Abstract
Many models of noisy systems are too complex to be solved analytically, or even numerically if
a large range of time scales is involved. For a large class of high-dimensional systems it may be
possible to derive lower-dimensional reduced models. The reduced model is often simpler to solve
analytically and faster to integrate numerically, while still retaining the essential features of the
full system. This short note demonstrates how one can apply a multiscale method to study model
reduction for a class of slow-fast SDE systems as well as functionals along their trajectories. The
main goal is to derive, at a formal level, a limiting SDE for the slow (resolved) variables in the
limit of infinite time scale separation1, thereby eliminating the fast (unresolved) variables from the
description. The derived SDE can usually be justified rigorously by a homogenization theorem or
verified by numerical experiments.
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1. Notation and Background Materials

Consider a diffusion process Xt ∈ Rd, t ≥ 0, satisfying the Itô SDE:

dXt = b(t,Xt)dt+ σ(t,Xt)dW t, (1)

where b ∈ Rd, σ ∈ Rd×m is differentiable (in X), and W t ∈ Rm is a Wiener process. Equivalently,
it can be cast as the following Stratonovich SDE:

dXt = u(t,Xt)dt+ σ(t,Xt) ◦ dW t, (2)

where u(t,Xt) = b(t,Xt)−c(t,Xt), ◦ denotes Stratonovich convention, and, in index-free notation,

c =
1

2
[∇ · (σσT )− σ∇ · (σT )], (3)

or, in components,

ci =
1

2

∂σij

∂Xk
σkj . (4)

1. It may be possible to derive effective SDEs in the case of finite time scale separation using the method in Wouters
and Gottwald (2019).
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In the above, ∇· denotes divergence operator which contracts a matrix-valued function to a vector-
valued function: for the matrix-valued function A(X), the ith component of its divergence is given

by (∇·A)i =
∑
j
∂Aij

∂Xj . The superscript T denotes transposition. We have used Einstein’s summation
convention for repeated indices.

2. Homogenization of Slow-Fast SDE Systems and Their Functionals

Consider the following Itô SDE system for Zt = (Xt,Y t, At) ∈ Rn × Rm × R:

dXt = u0(Xt)dt+
1

ε
U1(Xt)Y tdt+ σ0(Xt)dW̃ t, (5)

dY t = − 1

ε2
B2(Xt)Y tdt+

1

ε
b1(Xt)dt+

1

ε
σ1(Xt)dW t, (6)

dAt = r(Xt,Y t)dt+
1

ε
q(Xt,Y t)dt+ p(Xt,Y t) · dXt, (7)

where W̃ t and W t are independent Wiener processes. In the above, the variables Zt are O(1) as
ε→ 0. The coefficients in the SDEs above have sufficiently nice properties which allow us to justify
our derivations later. The above systems are variants of the one considered in Bo and Celani (2013)
(see also Bo and Celani (2017, 2014)).

We assume that, for a given X, the matrix-valued function B2(X) is positive stable (i.e. all
its eigenvalues have positive real part), and therefore it is invertible at any given X. The diffusion
matrices σiσ

T
i (i = 0, 1) are possibly degenerate, but it is still possible to work with the degenerate

case under a more technical setting (see Pavliotis and Stuart (2008) for details), which we will bypass
from now on. Here we have chosen to work with a specific fast process, which is the Vasicek model
(viewing X as a parameter), to allow explicit expression for the effective coefficients to be derived
later, rather than a general ergodic process such as the one considered in Pavliotis and Stuart (2008).

All the equations contain fast dynamics but the dynamics in Y is one order of magnitude faster
than in X and A. Therefore, the Z-dynamics can be simplified by eliminating the fast (unresolved)
variable Y and described effectively by equations for the slow (resolved) variables X and A alone.
The main goal of this note is to derive an effective (homogenized) SDE for the slow process Qt =
(Xt, At) in the limit ε→ 0.

We will study this problem using a formal perturbative expansion of infinitesimal generator
(note that we can also study homogenization at the level of sample path) of the process Zt. The
results obtained via this approach can be justified using the theorems in Pavliotis and Stuart (2008).
Although this gives very weak convergence result, the method is simple and fairly convenient to use.
On the other hand, while the sample path approach leads to strong convergence result the analysis
is often more technical, involving some intricate estimates – see, for instance, Lim and Wehr (2018)
or Lim et al. (see also the relevant references therein for a list of previous works on homogenization).

The following statement is the main result of this note. We refer to Appendix A for a detailed
derivation.

For ε� 1 and times up to O(1), the process Qt, solving (5)-(7), is approximated by the solution
to the following Itô SDE:

dQt = F (Xt)dt+A(Xt)dW t, (8)

where the drift vector F = (F 1, F2), with

F 1(X) = u0(X) +U1(X)B−12 (X)b1(X) + S(X), (9)

F2(X) = r(X,Y ) + p(X,Y ) · u0(X)

+ b1(X) ·∇Y (−L−10 (p(X,Y ) · (U1(X)Y ) + q(X,Y )))

+ (U1(X)Y ) ·∇X(−L−10 (p(X,Y ) · (U1(X)Y ) + q(X,Y ))). (10)
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In the above,

• overbar denotes averaging with respect to the invariant density of a mean zero Gaussian process
with the covariance matrix J that satisfies the Lyapunov equation2 B2J+JBT

2 = σ1σ
T
1 , and

L0 = −B2Y ·∇Y + 1
2 (σ1σ

T
1 ) : ∇Y ∇Y is the infinitesimal generator associated with the fast

dynamics, where A : ∇Y ∇Y :=
∑
i,j A

ij ∂2

∂Y i∂Y j ,

• S = ∇ · (U1B
−1
2 JUT

1 ) − U1B
−1
2 ∇ · (JUT

1 ) is the so-called noise-induced drift, whose ith
component is

Si = (U1J)lk
∂

∂X l
(U1B

−1
2 )ik, (11)

• the diffusion matrix A satisfies AAT = 1
2 (A0 +AT

0 ) +A1, with

A0 =

[
B0 v0
wT

0 u0

]
, (12)

where

B0 = (U1ν)(U1ν)T , with ν = B−12 σ1, (13)

v0 = 2U1y(−L−10 (p · (U1y) + q)), (14)

wT
0 = 2(p · (U1y) + q)(−L−10 (yTUT

1 ), (15)

u0 = 2(p · (U1y) + q)(−L−10 (p · (U1y) + q)), (16)

and

A1 =

[
σ0σ

T
0 σ0σ

T
0 p

(σ0σ
T
0 p)T (pTσ0)(pTσ0)T

]
. (17)

It can be shown that AAT is positive semidefinite, for all X. We remark that the convergence is
only valid in the sense of weak convergence of probability measures and, therefore, the approximated
bKe does not determine the limiting SDE uniquely (in particular, knowledge of AAT does not
determine A uniquely).

Next we elaborate on the effective SDE for the functional At. Analogous results could be obtained
in the case when the pre-limit SDEs have coefficients (for instance, r, p and q) that depend explicitly
on time. In the case when the pre-limit SDE system is time-homogeneous, as was considered here,
one can also represent the effective drift in the equation for the functional At in terms of time
integral:

F2(X) = r(X,Y ) + p(X,Y ) · u0(X) +

∫ ∞
0

EµXG(X, φtX(Y ))dt, (18)

whenever the time integral is well defined, where

G(X, φtX(Y )) = b1(X) ·∇Y (p(X, φtX(Y )) · (U1(X)φtX(Y )) + q(X, φtX(Y )))

+ (U1(X)φtX(Y )) ·∇X(p(X, φtX(Y )) · (U1(X)φtX(Y )) + q(X, φtX(Y ))),
(19)

and EµX denotes the product measure formed from distributing Y in its invariant measure, together
with the Wiener process driving the equation for φtX(Y ). An alternative representation, in terms of

2. Positive stability of B2 ensures that there exists a unique solution to this equation.
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time averages, via the Birkhoff’s ergodic theorem, can also be obtained – see Pavliotis and Stuart
(2008).

We now discuss a particular case when p(X,Y ) := p0(X) is independent of the fast variable.
If, in addition, q = 0 and σ0 = 0, the effective SDE for At simplifies considerably. In particular, we
have the following result.

Let p(X,Y ) := p0(X) be independent of the fast variable, q = 0 and σ0 = 0. Then, for ε� 1
and times up to O(1), the process At, solving (7), is approximated by the solution to the Itô SDE:

dAt = rdt+ p0 · dXt + dA′t, (20)

where Xt solves the Itô SDE:

dXt = (u0(Xt) +U1(Xt)B
−1
2 (Xt)b1(Xt) + S(Xt))dt+U1(Xt)B

−1
2 (Xt)σ1(Xt)dU t, (21)

with S the noise-induced drift as before, U t a Wiener process, and

dA′t = [∇ · (pT0U1µU
T
1 )− pT0 ∇ · (U1µU

T
1 )]dt = U ia1 U

jb
1 (B−12 J)ab

∂pi0
∂Xj

dt, (22)

or equivalently,

dAt = rdt+ p0 ◦ dXt + dA′′t , (23)

where

dA′′t = [∇ · (pT0U1µ
T
AU

T
1 )− pT0 ∇ · (U1µ

T
AU

T
1 )]dt =

1

2
Ukb1 U ja1 µabA

(
∂pj0
∂Xk

− ∂pk0
∂Xj

)
dt. (24)

Therefore, in this special case we see that whenever µ is symmetric, the effective SDE for the
functional At can be expressed entirely in terms of the trajectory of the slow process with the
Stratonovich definition3.
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Appendix A. Derivation of Result 2.1

The infinitesimal generator of the process Zt is

L =
1

ε2
L0 +

1

ε
L1 +L2, (25)

where

L0 = −B2(X)Y ·∇Y +
1

2
(σ1(X)σT1 (X)) : ∇Y ∇Y , (26)

L1 = U1(X)Y ·∇X + b1(X) ·∇Y + p(X,Y ) · (U1(X)Y )
∂

∂A
+ q(X,Y )

∂

∂A
, (27)

L2 = u0(X) ·∇X +
1

2
(σ0(X)σT0 (X)) : ∇Y ∇Y + r(X,Y )

∂

∂A
+ p(X,Y ) · u0(X)

∂

∂A

+
1

2
(pT (X,Y )σ0(X))(pT (X,Y )σ0(X))T

∂2

∂A2
+ (σ0(X)σT0 (X)p(X,Y )) ·∇X

∂

∂A
, (28)

where A : ∇Y ∇Y :=
∑
i,j A

ij ∂2

∂Y i∂Y j .
The backward Kolmogorov equation (bKe) corresponding to the SDE system (5)-(7) is:

∂ρ

∂t
= Lρ, (29)

where ρ is a function of X,Y , A and t.
We seek a series expansion for the solution of (29) of the form ρ = ρ0 + ερ1 + ε2ρ2 + . . . .

Substituting this expression into the bKe and equating terms of the same power in ε, we arrive at
the following hierarchy of equations:

L0ρ0 = 0, (30)

L0ρ1 +L1ρ0 = 0, (31)

∂ρ0
∂t

= L0ρ2 +L1ρ1 +L2ρ0. (32)

The generator L0, when viewed as a differential operator in Y , in which X appears as a param-
eter, is the infinitesimal generator of an ergodic Markov process. It has one-dimensional null space
characterized by L01(Y ) = 0 and L∗0ρ

∗(Y ;X) = 0, where 1(Y ) denotes constants in Y , L∗0 is the
adjoint of L0, and ρ∗ is the density of an ergodic measure µX(dY ) = ρ∗(Y ;X)dY . Therefore, eqn.
(30) and the ergodicity of the fast process imply that ρ0 = ρ(X, A, t).

Eqn. (31) is the Poisson equation:

−L0ρ1 = (U1(X)Y ) ·
(
∇Xρ+ p(X,Y )

∂ρ

∂A

)
+ q(X,Y )

∂ρ

∂A
, (33)

where L0 = −(B2(X)Y ) · ∇Y + 1
2 (σ1(X)σ1(X)T ) : ∇Y ∇Y . This is a PDE in Y , with X a

parameter. When we, in addition, require that the right hand side averages to zero with respect to
ρ∗ (centering condition), we refer to the Poisson equation (33) together with this condition as a cell
problem Pavliotis and Stuart (2008).

Assuming that p and q are such that the right hand side in (33) satisfies the centering condition,
the cell problem is then solvable (by the Fredholm alternative) and we solve it via separation of
variables. The general solution of (33) has (up to a constant in the null space of L0, Null(L0), and
we are setting the constant to zero – this constant will not affect the limiting bKe) the form:

ρ1 = Φ(X,Y ) ·∇Xρ+ φ(X,Y )
∂ρ

∂A
=: Φ̃(X̃,Y ) ·∇X̃ρ, (34)
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where X̃ = (X, A), for some vector-valued functions Φ, Φ̃, and scalar-valued function φ. We are
going to use this solution and express the effective drift and diffusion coefficient of the limiting SDE
in terms of Φ and φ. We expect the term involving U1 in the X equation and the terms involving
q and p in the A equation to contribute to (or, homogenize to) O(1) effective drift and noise terms
in the limiting equations in the limit ε→ 0.

On the other hand, the formal solution of (33) can be written explicitly as:

ρ1 = −L−10

(
U ia1 (X)Y a

∂ρ

∂Xi
+ pi(X,Y )U ia1 (X)Y a

∂ρ

∂A
+ q(X,Y )

∂ρ

∂A

)
(35)

= −U ia1 (X)
∂ρ

∂Xi
L−10 (Y a)− U ia1 (X)

∂ρ

∂A
L−10 (pi(X,Y )Y a)−L−10 (q(X,Y ))

∂ρ

∂A
, (36)

where −L−10 , being the inverse of a differential operator in the fast variable Y and containing X as a
parameter, is an integral operator satisfying the time integral representation formula (−L0)−1(f(X,Y )) =∫∞
0

(eL0tf)(X,Y )dt =
∫∞
0

Ef(X, φtX(Y ))dt (see Result 11.8 in Pavliotis and Stuart (2008)), where
E denotes expectation with respect to the Wiener measure and φtX(Y ) is the solution operator of
the fast dynamics (with X fixed) satisfying:

dφtX(Y ) = −B2(X)φtX(Y )dt+ σ1(X)dW t, φ
0
X(Y ) = Y . (37)

Therefore, we can identify Φi = −U ia1 (X)L−10 (Y a) and φ = −L−10 (pi(X,Y )U ia1 (X)Y a + q(X,Y )).
The solvability condition for (32), for each fixed X, gives:

∂ρ

∂t
=

∫
(L1ρ1 +L2ρ0)ρ∗(Y ;X)dY = 0, (38)

for all ρ∗ ∈ Null(L∗0) and
∫
ρ∗(Y ;X)dY = 1. In our case, ρ∗ is the invariant density of a mean zero

Gaussian process with the covariance matrix, J = J(X), satisfying the Lyapunov equation

B2(X)J(X) + J(X)BT
2 (X) = σ1(X)σT1 (X). (39)

Writing L1 as L1 = θ(X,Y ) ·∇X̃ + b1(X) ·∇Y , where θ = (U1(X)Y , (U1(X)Y ) ·p(X,Y ) +
q(X,Y )), and using the expression (34) for ρ1, we find:

L1ρ1 = θ(X,Y )⊗ Φ̃(X,Y ) : ∇X̃∇X̃ρ+ (∇X̃Φ̃(X,Y )θ(X,Y )) ·∇X̃ρ

+ (∇Y Φ̃(X,Y )b1(X)) ·∇X̃ρ. (40)

Let overbar denote averaging with respect to ρ∗ in the following. Working with (38), one com-
putes the limiting bKe, from which one identifies the associated Itô SDE for the joint process
Qt = (Xt, At) – this is exactly the SDE in Result 2.
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